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The boundary value problem for the nonlinear shallow-water equations with a beach
source term is solved by direct use of physical variables, so that solutions are
more easily inspected than those obtained by means of hodograph transformations.
Beyond an overall description of the near-shoreline flows in terms of the nonlinear
shallow-water equations, significant results are provided by means of a perturbation
approach which enables much of the information on the flow to be retained. For
sample waves of interest (periodic and solitary), first-order solutions of the shoreline
motion and of the near-shoreline flows are computed, illustrated and successfully
compared with the equivalent ones obtained through a hodograph transformation
method previously developed by the authors. Wave–wave interaction, both at the
seaward boundary and within the domain, is also accurately described. Analytical
conditions for wave breaking within the domain are provided. These, compared with
the authors’ hodograph model, show that the first-order condition of the present
model is comparable to the second-order condition of that model.
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1. Introduction and background
Near-shoreline flows induced by long waves propagating on a frictionless sloping

beach of constant slope are traditionally studied by means of the nonlinear shallow-
water equations (NSWEs; Carrier & Greenspan 1958; Shen & Meyer 1963; Tuck &
Hwang 1972; Meyer 1986a; Brocchini & Peregrine 1996; Pritchard & Dickinson,
2007).

The aim of the present paper is the solution of the boundary value problem (BVP)
for the NSWE with a beach source term by direct use of the physical variables,
i.e. without resorting to hodograph transformations such as those performed by
Antuono & Brocchini (2007). Hence, though the global framework for the solution
of this very recently tackled problem is the same, the present solution has the major
advantage of being formulated in variables which are more easily inspected.

This is achieved first by providing a clear overall description of the flow in terms
of the NSWEs and subsequently by using a perturbation approach in the (x, t)-
space, which properly accounts for nonlinear contributions at the desired order of
accuracy.

† Email address for correspondence: matteoantuono@gmail.com
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Figure 1. Sketch of the geometry and the flow dimensionless variables
for the beach problem.

1.1. The nonlinear shallow-water equations

The NSWEs, in dimensionless form, read

dt + (u d)x = 0,

ut + u ux + dx + 1 = 0,

}
(1.1)

in which u is the onshore velocity; d = η − x is the depth; η is the free-surface
elevation; and the notation ( )i indicates partial differentiation with respect to the
variable ‘i’. The axes origin is posed at the undisturbed shoreline; the x-coordinate
gives the onshore direction and points in the landward direction, with (x, z) forming
a right-handed reference frame (figure 1). The above equations have been cast in
dimensionless form using the scale factors of Brocchini & Peregrine (1996):

d = d∗/d∗
0 , u = u∗/

√
g d∗

0 , x = x∗ tan(θ)/d∗
0 , t = t∗ tan(θ)

√
g/d∗

0 , (1.2)

in which the variables with the superscript ‘*’ represent the dimensional quantities;
d∗

0 is the still-water depth at the seaward boundary of the sloping region; g is the
gravity acceleration; tan(θ) is the beach slope; and θ is the beach angle with respect
to the x-axis.

System (1.1) is hyperbolic, and its characteristic form is

dα/ dt = 0 on curves such that dx/ dt = u + c,

dβ/ dt = 0 on curves such that dx/ dt = u − c,

}
(1.3)

in which c =
√

d and α = 2c + u + t, β = 2c − u − t . (1.4)

The variables α and β are the so-called Riemann invariants, since they do not change
their value along the special curves in (1.3) known as ‘characteristics’. Assuming the
flow to be subcritical (that is u + c > 0 and u − c < 0), the first type of characteristic
curves propagates signals towards the shore, while the second type propagates signals
offshore. We name the first and the second characteristics of (1.3) ‘incoming’ and
‘outgoing’ respectively. By defining the shoreline as the curve along which d = 0, that
is c = 0, all characteristic curves coincide with this special curve except when bores
meet the shoreline, a case which is not considered here. Let x = xs(t) denote the
shoreline position (‘s’ is for ‘at the shoreline’). Since the shoreline separates the wet
part of the domain from the dry one, it also follows that

dxs/dt = us(t), where us(t) ≡ u(xs(t), t). (1.5)

The shoreline’s velocity equals the velocity of the fluid particle at the shoreline; so
these velocities have the same horizontal component, as stated in (1.5).
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Figure 2. Sketch of the domain in the (x, t)-plane for the BVP.

1.2. The boundary value problem

We want to solve the BVP for the NSWEs; that is to say we want to find a solution
of (1.1) in the domain (x, t) ∈ (−1, xs(t)) × � assigning data (η, u) at the seaward
boundary of the sloping beach, i.e. at x = −1, ∀t ∈ � (see figures 1 and 2). We
limit our attention to non-breaking waves, although we try to extend some results
also to breaking waves. In §§ 2 and 3 we use a perturbation expansion starting from
the assumption of small data at the seaward boundary. This hypothesis includes the
case of non-breaking waves and, moreover, is not restrictive, since waves entering the
sloping region amplify in such a region because of shoaling effects. The perturbation
parameter is ε = H ∗/d∗

0 in which H ∗ is the wave height and d∗
0 is the still-water

depth, both evaluated at the seaward boundary. Hence, we say a wave is ‘small’ if
ε � 1 (i.e. if its height is small in comparison with the local depth, which implies
that η = O(ε) � 1 at the seaward boundary). Moreover, balancing the continuity
equation (first in (1.1)), we also get u = O(ε) at the seaward boundary. Note that the
hypothesis ε � 1 is a good assumption only if H ∗ and d∗

0 are evaluated at the seaward
boundary. Indeed, near the shoreline (where d � 1), d∗

0 can have the same order as
H ∗, and then we would obtain ε = O(1). (This observation is based on the analyses
proposed in Bellotti & Brocchini 2002.) This also implies that we cannot linearize the
NSWEs, since the linearization would be well posed only if ε � 1 in the entire sloping
region. Such a result also means that the propagation of waves near the shore is an
intrinsically nonlinear phenomenon.

For these reasons, in the following we use the NSWEs without applying any
linearization and define proper perturbation expansions, applied to the characteristic
paths (§ 2) based only on data at the seaward boundary (i.e. based only on the
parameter ε � 1). This ensures that the solution, given in terms of the dependent
variables u and η and illustrated in § 3, preserves its nonlinear nature and gives
uniform ε-expansions, i.e. expansions valid all over the domain.

2. The governing equation
If we express the dependent variables u, η through the Riemann invariants α, β , we

can rewrite the first two equations of (1.3) as follows:

α = constant on curves such that
dx

dt
=

3 α − β

4
− t,

β = constant on curves such that
dx

dt
=

α − 3 β

4
− t.

⎫⎪⎬
⎪⎭ (2.1)
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In the (x, t)-plane each characteristic curve is parameterized by t and labelled by
the initial time t0 defined to be where the characteristic meets x = −1. Hence, we
pose x = φ(t, t0), and for the sake of brevity, we introduce the notation t0 ≡ y. We
have α =α0(y) ≡ 2c(−1, y) + u(−1, y) + y along the incoming characteristic curves
and β = β0(y) ≡ 2c(−1, y) − u(−1, y) − y along the outgoing characteristic curves; α0

and β0 are our data. Then we can write

α = α0 on curves such that φt =
3α0 − β

4
− t,

β = β0 on curves such that φt =
α − 3β0

4
− t.

⎫⎪⎬
⎪⎭ (2.2)

Since the boundary values are carried by the incoming characteristic curves, we limit
our attention to them and obtain a closed equation for their motion. In the following
we show that our choice is sufficient to describe the global flow evolution.

We start by rewriting the first expression of (2.2) as follows:

φt =
3 α0 − β

4
− t ⇒ β = 3 α0 − 4(φt + t). (2.3)

In this case it is β = β(φ, t), since we are ‘moving’ along an incoming characteristic
curve. Then, taking the total t-derivative of β , we have

β̇ = βt + φtβx = βt +

(
3α0 − β

4
− t

)
βx, (2.4)

while using (2.3) we obtain

β̇ = −4(φtt + 1). (2.5)

The y-derivative of (2.3) gives

∂

∂y
(β) = βxφy = 3α̇0 − 4φty ⇒ βx =

3α̇0 − 4φty

φy

, (2.6)

where all the derivatives of β are evaluated at x = φ(t, y). Now we only need an
explicit expression for βt . We can obtain it by rewriting the second expression of (1.3)
in the following way:

βt + (u − c)βx = βt +

(
α − 3β

4
− t

)
βx = 0. (2.7)

Since this equation is valid for all (x, t) ∈ (−1, xs(t)) × �, it is also valid along x = φ.
Then, we can evaluate (2.7) at x = φ, obtaining

βt +

(
α0 − 3β

4
− t

)
βx = 0 (2.8)

from which we get the required expression of βt . Combining (2.3)–(2.6) into (2.8), we
obtain the following differential equation for the incoming characteristic curves:

2φy(φtt + 1) = (4φty − 3α̇0)(α0 − t − φt ). (2.9)

The BVP we are solving is then

2φy(φtt + 1) = (4φty − 3α̇0)(α0 − t − φt ) for t > y,

φ|t=y = −1,

φt |t=y =
3α0 − β0

4
− y.

⎫⎪⎪⎬
⎪⎪⎭ (2.10)
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It is simple to prove that the equation for the outgoing curve can be obtained from
(2.9) by replacing α0 with −β0. The meaning of this is explained in the following
section.

2.1. A trivial solution of (2.10)

We can test (2.10) using the simplest known analytical solution for the NSWEs, i.e.
the solution in the trivial case of no motion (u = η ≡ 0) for which we get (see (1.4))

α = 2
√

−x + t, β = 2
√

−x − t (2.11)

and the following boundary data (x = − 1 and t = y):

α0 = 2 + y, β0 = 2 − y. (2.12)

For the incoming/outgoing characteristic curves we obtain, respectively,

x = − (t − α0)
2

4
, x = − (t + β0)

2

4
. (2.13)

Then, the incoming curves can be expressed in the following way:

φ(t, y) = − (t − y − 2)2

4
. (2.14)

It is simple to verify that (2.14) is a solution of (2.10). Further, the curves appearing in
(2.13) coincide for β0 = −α0, which happens when the incoming curves reach the still-
water shoreline at x = 0. This result is not restricted to the trivial case, since it is always
true that β = −α at the shoreline. Along this special curve all the characteristic curves
(incoming, outgoing) coincide, and thus, the shoreline can be seen as the envelope
of the characteristic curves themselves. Moreover, it implies that the incoming curve
(carrying α0) and the outgoing curve (carrying β0 = −α0) can be seen as branches of
a unique curve which goes from the seaward boundary up to the shoreline where is
reflected. This supports our choice of studying only the incoming curves and suggests
the use of only one datum, i.e. α0, regarding β0 as an unknown function of this datum.
From a physical point of view, this means that α is carrying information coming from
the ocean into the sloping region, while β is carrying information on the presence of
the shoreline out of the sloping region.

2.2. A perturbation expansion

Apart from the trivial case above, the direct solution of the boundary problem (2.10)
might be prohibitive because of the high nonlinearity of the equation for φ. Thus, we
choose to apply a perturbation method on the boundary data, which enables us to
find a simplified solution. Hence, we assume our data to be ‘small’, and we expand it
in series of a small parameter ε:

α0 = α0,0 + εα0,1 + ε2α0,2 + O(ε3) (2.15)

in which α0,0 = 2 + y. Similarly we can suppose the solution of (2.10) to be ‘near’ the
trivial one; then we assume the following expansion for φ:

φ = φ(0) + εφ(1) + ε2φ(2) + O(ε3) (2.16)

in which φ(0) is given by (2.14). Substituting (2.15) and (2.16) into (2.9), we obtain at
the first order in ε:

(t − y − 2)
(
φ

(1)
t t + 2φ

(1)
ty

)
− φ

(1)
t + φ(1)

y + α0,1 − 3

2
(t − y − 2)α̇0,1 = 0. (2.17)
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The factor (t −y −2) is a ‘trace’ of the undisturbed shoreline xs =0, since in the trivial
case the characteristic curves reach it when (t − y − 2) = 0. Putting ψ (1) = φ(1) − (t −
y − 2)α0,1/2, we get

(t − y − 2)
(
ψ

(1)
t t + 2ψ

(1)
ty

)
− ψ

(1)
t + ψ (1)

y = 0. (2.18)

Then, we make the following change of variables:

τ = t − y − 2,

ξ = y
⇒

∂

∂t
=

∂

∂τ
,

∂

∂y
= − ∂

∂τ
+

∂

∂ξ
.

⎫⎪⎪⎬
⎪⎪⎭ (2.19)

Now, the domain is (τ, ξ ) ∈ (−2, +∞) × � and (2.18) becomes

τ
(
2ψ

(1)
τξ − ψ (1)

ττ

)
− 2ψ (1)

τ + ψ
(1)
ξ = 0. (2.20)

Applying the Fourier transform F with respect to the ξ variable, we obtain

τ
(
2isχ (1)

τ − χ (1)
ττ

)
− 2χ (1)

τ + isχ (1) = 0, (2.21)

in which χ (1)(τ, s) = F(ψ (1)(τ, ·))(s). The only regular (i.e. bounded, continuous and
differentiable) solution for (2.21) is

χ (1)(τ, s) = exp( isτ )A1(s)[J0(sτ ) − iJ1(sτ )], (2.22)

and therefore, we obtain

φ(1)(τ, ξ ) =
1

2π

∫
�

e is(τ+ξ )A1(s)[J0(sτ ) − iJ1(sτ )] ds +
τ

2
α0,1, (2.23)

in which Jn(x) is the Bessel function of the first kind and of the nth order, and the
integration is carried out for s varying from −∞ to +∞.

At the second order in ε it is

(t − y − 2)
(
φ

(2)
t t + 2φ

(2)
ty

)
− φ

(2)
t + φ(2)

y + α0,2 − 3

2
(t − y − 2)α̇0,2 + F = 0, (2.24)

in which F is a source term which has the form

F (t, y) = 2φ(1)
y φ

(1)
t t +

(
3α̇0,1 − 4φ

(1)
yt

)(
α0,1 − φ

(1)
t

)
. (2.25)

Following the previously described procedure, we obtain

φ(2)(τ, ξ ) =
1

2π

∫
�

exp[ is(τ + ξ )]A2(s)NJ (sτ ) ds +
τ

2
α0,2 +

i

2π

∫
�

e is(τ+ξ )

×
[∫ τ

0

sz[NJ (sτ )NK (sz)−NJ (sz)NK (sτ )] e− iszF̂ (z, s) dz

]
ds, (2.26)

in which

NJ (x) ≡ [J0(x) − iJ1(x)], NK (x) ≡ [K0(− ix) − K1(− ix)], (2.27)

with Kn(x) the modified Bessel function of the second kind and of the nth order;
F̂ (τ, s) = F(F (τ, ·))(s); and F (τ, ξ ) is obtained from (2.25) using (2.19). Higher-order
contributions exhibit solutions that have the same structure as (2.26). In §A.1 of the
Appendix the regularity of (2.26) at the shoreline is proved.
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2.3. Assigning the boundary value

From (2.10) it is clear that two initial conditions, the first concerning φ|t=y and the
second concerning φt |t=y , have to be satisfied. However, at each order in ε, we can
assign only one datum, since we have only one unknown function (A1(s) and A2(s)
for the first and the second order respectively). This is a seeming contradiction. In
fact, the initial condition on φt |t=y is actually unknown, since as underlined in §2.1,
β0 has to be regarded as function of α0. This implies that φt |t=y is actually a result
of our problem and cannot be regarded as a datum. (In §A.1.2 of the Appendix we
show that the BVP with no condition on φt is ill posed.) After agreeing that we have
to assign only one datum, i.e. φ|t=y , we pose

φ|
t=y

= −1 = φ(0)|
t=y

+ εφ(1)|
t=y

+ ε2φ(2)|
t=y

+ O(ε3). (2.28)

We briefly recall that the condition φ = −1 at t = y corresponds to the assumption
that the incoming characteristic curves start travelling inside the sloping region at the
position x = −1 which, therefore, represents the seaward boundary of the domain.
Since φ(0)|t=y = −1, we obtain φ(n)|t=y = 0 for n � 1. It is more convenient to assign
the datum in the (τ, ξ )-space; in this case t = y corresponds to τ = −2. From (2.23)
we get

A1(s) =
F(α0,1) exp(2 is)

J0(2s) + iJ1(2s)
, (2.29)

and from (2.26) we get the value of A2(s),

A2(s) =
F(α0,2) exp(2 is)

J0(2s) + iJ1(2s)
+

is

NJ (−2s)

∫ 0

−2

z[NJ (−2s)NK (sz)

− NJ (sz)NK (−2s)] e− iszF̂ (z, s) dz.

Then, we obtain the following solution at the first order:

φ(1)(τ, ξ ) =
1

2π

∫
�

e is(τ+ξ+2)F(α0,1)
NJ (τs)

NJ (−2s)
ds +

τ

2
α0,1. (2.30)

And at the second order we have,

φ(2)(τ, ξ ) =
1

2π

∫
�

e is(τ+ξ+2)F(α0,2)
NJ (τs)

NJ (−2s)
ds +

τ

2
α0,2 +

i

2π

∫
�

s e is(τ+ξ )

×
[

NJ (τs)

NJ (−2s)

∫ 0

−2

z[NJ (−2s)NK (sz) − NJ (sz)NK (−2s)] e− iszF̂ (z, s) dz

+

∫ τ

0

z [NJ (sτ )NK (sz) − NJ (sz)NK (sτ )] e− iszF̂ (z, s) dz

]
ds.

The higher orders show solutions similar to the second-order solution. The graphical
illustrations of the first-order solutions shown in figure 3 clearly highlight the solution
structure and the regions of flattening and steepening (run-downs) as a function of
the density of the characteristics.

3. Some results
In the following, some important results are illustrated, namely the approximate

position of the shoreline and the explicit solution of the NSWEs up to the first and
the second order. Such results have been obtained by extracting roots of equations
using perturbation methods.
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Figure 3. Paths of the first-order characteristic curves. (a) The solitary wave described in
(3.21) (ε = 0.05, γ = 1.2). (b) The periodic wave described in (3.23) (ε = 0.05, ω = 1.5).

3.1. The shoreline equation

In the (x, t)-space, the shoreline is made by an envelope of the characteristics. To
obtain the equation representing such an envelope, we follow the procedure used by
Whitham (1974) and consider two incoming curves which start at the initial times y

and y + dy and meet at time t and position x = φ. Then we have

φ(t, y + dy) = φ(t, y) ⇒ φ(t, y + dy) − φ(t, y)

dy
= 0. (3.1)

Taking dy → 0, we obtain

φy(t, y) = 0, (3.2)

which represents the equation of the envelope. The pairs (t, y) which satisfy (3.2)
describe a curve in the (t, y)-plane. We, thus, assume that it is possible to get an
explicit solution of the form y = y(t) (the validity of such an assumption is studied in
detail in §4). This function identifies, through y, the characteristic curve which reaches
the shoreline at time t .

In the next section we find an explicit approximate expression for y(t) by means of
the usual perturbation method. For this reason we prefer to indicate the solution above
by the symbol y(t; ε), highlighting the dependence on the perturbation parameter, ε.
As a consequence of (3.2), such a solution has to satisfy

φy(t, y)|
y(t;ε) ≡ 0, (3.3)

and because of its definition, it gives

xs(t; ε) = φ(t, y)|
y(t;ε). (3.4)

3.1.1. Estimates of the shoreline position

To find an explicit expression for the solution of the shoreline motion, we extend
the perturbation method assuming y(t; ε) to have the following form:

y(t; ε) = y0(t) + εy1(t) + ε2y2(t) + O(ε3). (3.5)
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Using a Taylor expansion, we get

φy(t, y)|y(t;ε) = φ(0)
y (t, y0) + ε

[
φ(0)

yy (t, y0)y1 + φ(1)
y (t, y0)

]
+ ε2

[
φ(0)

yyy(t, y0)
y2

1

2

+ φ(0)
yy (t, y0)y2 + φ(1)

yy (t, y0)y1 + φ(2)
y (y, y0)

]
+ O(ε3).

Imposing φy = 0 (i.e. requiring each order of the expansion to be zero), we obtain

y0(t) = t − 2, y1(t) = 2φ(1)
y (t, y0), y2(t) = 2

[
y1φ

(1)
yy (t, y0) + φ(2)

y (t, y0)
]
.

Knowledge of y0(t), y1(t) and y2(t) makes it possible to compute the shoreline position
up to the second order of approximation. Its expression is given by the following
expansion:

φ(t, y)|y(t;ε) = φ(0)(t, y0) + ε
[
φ(0)

y (t, y0)y1 + φ(1)(t, y0)
]
+ ε2

×
[
φ(0)

yy (t, y0)
y2

1

2
+ φ(0)

y (t, y0)y2 + φ(1)
y (t, y0)y1 + φ(2)(t, y0)

]
+ O(ε3).

Hereinafter we use the following notation for the approximate shoreline:

φ(t, y)|y(t;ε) = xs(t; ε) = εx(1)
s (t) + ε2x(2)

s (t) + O(ε3), (3.6)

in which

x(1)
s (t) = φ(1)(t, y0), x(2)

s (t) =

[
y2

1

4
+ φ(2)(t, y0)

]
. (3.7)

Actually, it is possible to obtain a solution for xs which is more accurate than a pure
first-order solely using the first-order assignment. Using the definition of y(t; ε), we
define the following ‘first-half-order’ solution for the shoreline:

xs(t; ε) = εx(1h)
s (t) + O(ε2), where x(1h)

s (t) = φ(1)(t, y0 + εy1). (3.8)

Since y1(t) = φ(1)
y (t, y0), x(1h)

s depends only on the first-order assignment, and thus, it
is simpler than the second-order solution but more accurate than a pure first-order
one.

3.2. Assigning data on η and u

The primary variables η and u at the seaward boundary of the domain are generally
available from measurements. Then, the main problem is how to treat two seaward
data, while on the contrary, the BVP requires only one datum (that is α0). Since η and
u are functions of both α0 and β0, it is not possible to assign η and u separately, but
it is necessary to first extract α0 and then solve the BVP through it. This procedure
ensures that the analytical solution and the boundary data contain the same value of
α0. However, since the NSWEs are an approximate model of the real physical wave
propagation, we cannot expect the same for the outgoing signal, that is β0. Then, we
have to assume that the analytical solution at the seaward boundary is in principle
different from the seaward data obtained from measurements. For this reason, in the
following we denote the solutions of the BVP at the seaward boundary by η̂ and
û in order to distinguish them from the boundary data η and u. Both pairs must
contain the same value of α0 but can, in principle, contain different outgoing signals,
β̂0 and β0 respectively. After the BVP is solved, β̂0 is found by imposing it to satisfy
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the second boundary condition, that is the condition on φt |t=y . In fact, the second
boundary condition always holds true notwithstanding it cannot be used until the
BVP is solved (here we briefly recall that the value of φt |t=y is a result of the solution
procedure). Comparisons between the pairs (η̂, û) and (η, u) shall help understand the
validity of the NSWEs.

Now, let us suppose the data to be small and, thus, have η = εη0 and u = εu0 with
η0, u0 the functions of y. Then we calculate α0 from the data and expand it in series
of ε:

α0 = 2
√

1 + εη0 + εu0 + y = (2 + y) + ε(u0 + η0) − ε2 η2
0

4
+ O(ε3). (3.9)

This provides α0,0, α0,1, α0,2 and allows us to solve the problem. In the same way,
we can obtain β0 and then β0,0, β0,1, β0,2, but generally, these values differ from the
solution of the BVP. As a consequence, we use the variables η̂, û and assume the
following expansion in powers of ε:

η̂ = εη̂0 + ε2η̂1 + O(ε3), û = εû0 + ε2û1 + O(ε3). (3.10)

Then, the expression of α0 obtained through η̂ and û is

α̂0 = 2
√

1 + η̂ + û + y = (2 + y) + ε(η̂0 + û0) + ε2

(
η̂1 − η̂2

0

4
+ û1

)
+ O(ε3).

Considering the different ε-orders of the previous expression, we obtain α̂0,0, α̂0,1, α̂0,2.

The same procedure provides the unknown function β̂0 and then β̂0,0, β̂0,1, β̂0,2:

β̂0 = 2
√

1 + η̂ − û − y = (2 − y) + ε(η̂0 − û0) + ε2

(
η̂1 − η̂2

0

4
− û1

)
+ O(ε3).

Finally, η̂ and û can be evaluated solving the equations

α̂0,n = α0,n, ∀n � 1, (3.11)

and imposing β̂0 to satisfy the second initial condition,

φt |t=y
=

3α̂0 − β̂0

4
− y, (3.12)

at each order of ε. Using the expansions for α̂0, β̂0 and, then, (3.11), we get

3α̂0 − β̂0

4
− y = 1 + ε

(
û0 +

η̂0

2

)
+ O(ε2) = 1 + ε

(
α0,1 − η̂0

2

)
+ O(ε2). (3.13)

In the same way, using (2.16), we find

φt |t=y
= 1 + εφ

(1)
t |

t=y
+ O(ε2), (3.14)

and comparing (3.13) and (3.14), we obtain the following first-order relation:

φ
(1)
t |

t=y
= α0,1 − η̂0

2
, ⇒ η̂0 = 2

[
α0,1 − φ

(1)
t |

t=y

]
. (3.15)

At this stage, we just have to evaluate φ
(1)
t |t=y from the first-order solution. Since

∂/∂τ = ∂/∂t , we can take the τ -derivative of (2.30), obtaining

φ(1)
τ (τ, ξ ) =

i

2π

∫
�

e is(τ+ξ+2) F(α0,1)

J0(2s) + iJ1(2s)

J1(sτ )

τ
ds +

α0,1

2
. (3.16)
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Since t = y is equivalent to τ = −2, we immediately obtain

φ
(1)
t |

t=y
≡ φ(1)

τ (−2, ξ ) =
i

4π

∫
�

e isξ F(α0,1)
J1(2s)

J0(2s) + iJ1(2s)
ds +

α0,1

2
.

Finally, using (3.15), we get

η̂0 =
1

2π

∫
�

e isyF(α0,1)
J0(2s)

J0(2s) + iJ1(2s)
ds, (3.17a)

û0 =
1

2π

∫
�

e isyF(α0,1)
iJ1(2s)

J0(2s) + iJ1(2s)
ds. (3.17b)

We cannot obtain a representation of α0,1 as function of η̂0 or û0 from (3.17a) and
(3.17b): in both cases we would get integrals with singular kernels. For example, using
(3.17a), we can try to rewrite α0,1 as function of η0. We get

α0,1 =
1

2π

∫
�

e i syF(η̂0)

(
1 + i

J1(2s)

J0(2s)

)
ds. (3.18)

Since J0(2s) = 0 on a infinite set of points and goes to zero as s−1, such an integral
is unbounded. The same result is obtained for û. Finally, this confirms that α is the
correct conservative variable.

Now we can use (3.7) to evaluate the shoreline up to the first order. Since y0 = t − 2
corresponds to τ =0 , we have

xs(t; ε) = εx(1)
s (t) + O(ε2) =

ε

2π

∫
�

e ist F(α0,1)

NJ (−2s)
ds + O(ε2). (3.19)

3.3. Some examples

Classical wave examples, namely periodic waves and the solitary wave, are discussed
in the following. In order to assign proper data at the seaward boundary, we use the
results obtained through the Korteweg–de Vries (KdV) equations. Indeed, since the α

datum is naturally associated with the incoming component of waves, we can assume
it to be related to waves of permanent shape moving from the constant-depth region
inside the sloping region. In this case the KdV equations give η0 = u0 at the first order
of approximation (see Mei 1983), and using (3.9), we get α0,1 = 2η0. In the following we
write η0 = ηI

0 and u0 = uI
0 to underline that these data are associated with the incoming

waves. These are the only assumptions under which we can express α as a function of
η. Solutions η̂0 and û0 at the seaward boundary are, generally, different from η0 and u0,
since they also account for the wave reflection at the shoreline. However, we can obtain
the reflected-wave component at the seaward boundary simply defining ηR

0 = η̂0 − ηI
0

and uR
0 = û0 − uI

0. Using the previous definition it is also simple to prove the relations

ηR
0 + uR

0 = 0, ηR
0 − uR

0 = β̂0,1, (3.20)

which confirms that β̂ is associated with the reflection of waves at the shoreline.

3.3.1. The solitary wave

We study the run-up of a solitary wave by means of the well-known case studied
by Synolakis (1987). Using the solution of the KdV equations and adapting it to the
scaling at hand, we obtain

ηI
0(y) = sech2(γy) with γ =

√
3ε

2 tan(θ)
. (3.21)



218 M. Antuono and M. Brocchini

0 2–2–4 4 6 8 10 12

0

0.05

–0.05

0.10

0.15

0.20
(a) (b)

0

0.1

–0.1

–0.3

–0.2

–0.4

0.2

0.3

xs(t) us(t)

t
0 2–2 4 6 8 10 12

t

Figure 4. Solitary wave solution at the shoreline for ε = 0.05 and γ = 1.2: (a) xs(t) and
(b) us(t) at the first order (dashed lines), at the first-half-order (solid lines) and the second-order
solution of Antuono & Brocchini (2007; dotted lines).

From Synolakis (1987), we also get

F(α0,1)(s) = F
(
2ηI

0

)
(s) =

2π

γ 2
scsch

(
π

2γ
s

)
. (3.22)

Since ε and tan(θ) are independent, γ and ε are independent as well.
In the following we illustrate the model performances by plotting results which are

a direct numerical evaluation of the asymptotic analytical solutions.
In figure 4 we show a comparison between the first-order and the first-half-order

solution of the present model and the second-order solution of Antuono & Brocchini
(2007) for the shoreline position and velocity and for ε = 0.05 and γ = 1.2.

For the present model, the shoreline velocity is evaluated by using (1.5). We also
recall that the solution of Antuono & Brocchini (2007) for the BVP is achieved by
using the hodograph transformation of Carrier & Greenspan (1958). The difference
between x(1h)

s and x(1)
s (recall 3.8) is small and x(1h)

s seems to better represent the
nonlinear flow characteristics at the shoreline, that is more rounded run-ups and
narrower run-downs. Moreover, the match of both present solutions with the second-
order solution of Antuono & Brocchini (2007) is fairly good (apart from a region
near the run-down). A larger discrepancy is observed between u(1h)

s and u(1)
s , while the

match between u(1h)
s and the second-order solution of Antuono & Brocchini (2007)

displays an overall improvement. The maximum run-up generally appears two time
units later than the α0,1 maximum value at the seaward boundary (compare figure 4
with figure 5a). This happens because the characteristic curves spend about two time
units to travel from the seaward boundary up to the shoreline – this is also evident
by inspection of the trivial solution ((2.13) and (2.14)).

A similar argument holds for the reflected signals ηR
0 and uR

0 in figures 5(e) and
5(f ) whose maxima at the seaward limit appear four time units later than the α0,1

maximum value. Finally, it is interesting to note the excellent match between η̂0 and
ηI

0 and between û0 and uI
0 during the earliest instants. This is physically meaningful,

since at the earliest instants there is no reflection from the shoreline, and therefore,
the incoming data have to coincide with the solution. Moreover, this confirms our
initial assumption, ηI

0 = uI
0, deduced from the KdV solution. Figures 5(c) and 5(d )

also clearly illustrate the superposition of the incoming and reflected components of
η̂0 and û0 at the seaward boundary. This exact (at the chosen order of approximation)
analysis of wave (incoming and reflected) interaction at the seaward boundary of the
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Figure 5. Solitary wave solution at the seaward boundary for ε = 0.05 and γ = 1.2: (a) εα0;
(b) εβ0; (c) εη̂0 (solid line) and εηI

0 (dashed line); (d ) εû0 (solid line) and εuI
0 (dashed line);

(e) εηR
0 ; (f ) εuR

0 .

domain is only possible by virtue of the fact that we have solved a BVP rather than
an initial value problem.

Notwithstanding the fact that the assumption ηI
0 = uI

0 is exact only in the case
of travelling waves of permanent shape, it proves to be good also for waves of
generic shape entering the sloping region. This is due to the fact that at the seaward
boundary we may treat wave propagation as linear. In the following, we apply such
an assumption to periodic waves.

3.3.2. Periodic waves

Let us consider the following periodic datum:

ηI
0(y) = cos(ωy). (3.23)

In this special case, we can obtain an explicit solution for φ(1) (see Appendix B).
In figure 6 we show the first-order and the first-half-order shoreline position and

velocity solutions as predicted by the present model and the second-order solutions
of the model of Antuono & Brocchini (2007) for ε = 0.05 and ω = 1.5.
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Figure 6. Periodic wave solution at the shoreline for ε = 0.05 and ω = 1.5: (a) xs(t) and
(b) us(t) at the first order (dashed lines) and at the first half-order (solid lines), and the
second-order solution of Antuono & Brocchini (2007) (dotted lines).

For what concerns the shoreline position, apart from the first-order solution,
nonlinear effects are evident and are characterized by rounded run-ups and
narrow run-downs. However, differences among the solutions are small, with x(1h)

s

better reproducing the second-order solution of Antuono & Brocchini (2007)
than x(1)

s .
On the contrary, larger discrepancies are observed for the shoreline velocity, since

nonlinearities act more strongly and force a significant skewness (steepening) of the
velocity signals associated with the present solution u(1h)

s and with the second-order
solution of Antuono & Brocchini (2007). This behaviour contrasts with that of the
shoreline solution, especially with the first-order one which is represented by a simple
sinusoidal wave.

Actually, this is also the case for the solution at the seaward boundary of
the domain. (The outputs illustrating the direct numerical evaluation of the
asymptotic solutions are shown in figure 7.) However, this does not mean that
the first-order solution is equivalent to the solution of the linear shallow-water
equations.

In the following we prove that the present model preserves the nonlinear features
of the propagation phenomenon, so that it is not possible to represent the first-order
solution as a simple sinusoidal wave in the whole domain.

3.4. Evaluation of u(x, t) and η(x, t)

Once the approximate characteristic curves have been obtained, we can evaluate u

and η as functions of x and t , obtaining a nonlinear approximate solution of the
BVP for the NSWEs. To do this, we first need to know the incoming and outgoing
characteristic curves crossing a generic point (x, t) of the domain. Once they are
known, we can get the associated Riemann invariants α(x, t) and β(x, t) and, finally,
the solutions u(x, t) and η(x, t) simply using (1.4).

We start by looking for the characteristic curves crossing a generic (x, t)-point,
where x =φ(t, y). Therefore, to express all the quantities as functions of x and t ,
we first need to make y explicit. In this way we get y = ỹ(x, t) which represents
the time at which the characteristic curve reaching (x, t) starts travelling inside the
domain. Actually, since the point (x, t) is reached by an incoming and an outgoing
characteristic curve, we expect to find two different functions ỹ(+)(x, t) and ỹ(−)(x, t)
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Figure 7. Periodic wave solution at the seaward boundary for ε = 0.05 and ω = 1.5: (a) εα0;
(b) εβ0; (c) εη̂0 (solid line) and εηI

0 (dashed line); (d ) εû0 (solid line) and εuI
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(see figure 8). Using the solution up to the second order, we have

x = − (t − y − 2)2

4
+ εφ(1)(t, y) + ε2φ(2)(t, y) + O(ε3). (3.24)

A first attempt to get ỹ is to assume the usual expansion ỹ(x, t) = ỹ0(x, t)+ εỹ1(x, t)+
ε2ỹ2(x, t) + O(ε3). Unfortunately, this gives a solution which is not uniform, that is
which fails in the evaluation of u(x, t) and η(x, t) for x > 0. To overcome the problem,
we must consider an expansion compatible with the presence of the moving shoreline
xs(t). Then, we assume the following second-order perturbation expansion for ỹ:

ỹ(x, t) = (t − 2) ± 2

√
−x + εx

(1)
s + ε2x

(2)
s + O(ε3) + εỹ1 + ε2ỹ2 + O(ε3). (3.25)

Stopping at the second-order approximation, ỹ(x, t) is defined for x � xs(t), the higher
orders being defined by adding further terms of xs(t) inside the square root and more
unknown functions ỹn. Moreover, using the expansion in (3.25), the structure of the
two roots ỹ(+)(x, t) and ỹ(−)(x, t) is immediately clear. For the sake of brevity, we
indicate the square root in (3.25) simply through S(x, t). Then, substituting (3.25) in
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t

Figure 8. Sketch of the problem discussed in §3.4. The figure represents the shoreline position
and two different characteristic curves crossing at the generic point P = (t, x) for the periodic
wave described in (3.23) with ε = 0.05 and ω = 1.5.

(3.24), we get

ỹ
(±)
1 = ±

φ(1)
(
t, ỹ

(±)
0

)
− x(1)

s

S(x, t)
,

ỹ
(±)
2 = ± 1

S(x, t)

[
−

(
ỹ

(±)
1

)2

4
+ ỹ

(±)
1 φ(1)

y

(
t, ỹ

(±)
0

)
+ φ(2)

(
t, ỹ

(±)
0

)
− x(2)

s

]
,

in which ỹ
(±)
0 = (t − 2) ± 2S(x, t). As proof of the coherence of the previous approach,

we note that for x → xs(t), i.e. for S(x, t) → 0, we have

ỹ
(±)
0 (x, t) → y0(t), ỹ

(±)
1 (x, t) → y1(t), ỹ

(±)
2 (x, t) → y2(t). (3.26)

The first root (ỹ(+)) is associated with the incoming characteristic curve carrying
the value α(ỹ(+)), the latter with the outgoing characteristic curve carrying the value
β(ỹ(−)) ≡ −α(ỹ(−)). These are the incoming and outgoing characteristic curves crossing
the point (x, t), and therefore, using (1.4), we obtain u(x, t) and η(x, t). Since the two
roots coincide for x → xs(t) (ỹ(+) = ỹ(−) ≡ ỹs), we simply obtain α(ỹs) = −β(ỹs), which
is consistent with the shoreline definition (c = 0 ⇔ α = −β).

Finally, we observe that even if the characteristic path only partially preserves its
nonlinear nature, the construction of explicit solutions as a function of the dependent
variables u and η is a fully nonlinear process. This means that the approximation of
the characteristic path does not correspond to a näıve linearization of the NSWEs.

We can now use the previous results to get the solutions η(x, t) and u(x, t) all over
the domain. At the first order of approximation in ε it is

α(x, t) =
(
2 + ỹ

(+)
0

)
+ ε

[
α0,1

(
ỹ

(+)
0

)
+ ỹ

(+)
1

]
+ O(ε2), (3.27)

β(x, t) = −
(
2 + ỹ

(−)
0

)
− ε

[
α0,1

(
ỹ

(−)
0

)
+ ỹ

(−)
1

]
+ O(ε2). (3.28)

Then using (1.4), we obtain

η(x, t) = ε

{
x(1)

s (t) +
S(x, t)

2

[
α0,1

(
ỹ

(+)
0

)
− α0,1

(
ỹ

(−)
0

)
+ ỹ

(+)
1 − ỹ

(−)
1

]}

+
ε2

16

[
α0,1

(
ỹ

(+)
0

)
− α0,1

(
ỹ

(−)
0

)
+ ỹ

(+)
1 − ỹ

(−)
1

]2
(3.29)

and

u(x, t) =
ε

2

[
α0,1

(
ỹ

(+)
0

)
+ α0,1

(
ỹ

(−)
0

)
+ ỹ

(+)
1 + ỹ

(−)
1

]
+ O(ε2). (3.30)



Solving the nonlinear shallow-water equations in physical space 223

0 2 4 6 8 10 12

0

2

–2 –2

4

6

8

0

2

4

6

8

t
0 2 4 6 8 10 12

t

(a) (b)

y
y~(–) y~(–)

y~(+) y~(+)

Figure 9. Contour lines φ(t, y) = x (solid lines), ỹ(+)(x, t) (dot-dashed line) and ỹ(−)(x, t)
(dotted line) for the periodic datum in (3.23) with ε = 0.05 and ω =1.5: (a) x = −0.3,
(b) x = −0.2.

We can also obtain the expression of the onshore velocity at the shoreline, us . At the
shoreline, we have

ỹ0 ≡ y0 = t − 2, ỹs = y0 + 2εφ(1)
y (t, y0) + O(ε2), (3.31)

and then, we can also evaluate α at the shoreline:

αs ≡ α(ỹs) = t + ε
[
2φ(1)

y (t, y0) + α0,1(y0)
]
+ O(ε2). (3.32)

Since αs = −βs and, thus, us = αs − t , we, finally, obtain

us(t) = ε
[
2φ(1)

y (t, y0) + α0,1(y0)
]
+ O(ε2) = εu(1)

s + O(ε2). (3.33)

It is also easy to show that at the first ε-order we have

u(1)
s =

dx(1)
s

dt
. (3.34)

This result is consistent with the condition ẋ = u which must hold along the shoreline.
In figure 9 we show a direct numerical evaluation of the contour lines of the first-

order solution in (3.24) (solid lines) along with their first-order approximations, that
is the curves ỹ(+)(x, t) and ỹ(−)(x, t) (dotted and dashed lines) at fixed values of x. It
is evident that the comparison between them is excellent. It is understood that a real
analytical solution exists if and only if x � xs(t). Conversely, during the time intervals
in which x > xs(t), the analytical solution has complex values. This is obvious, since
from a physical point of view, no water is found for x >xs(t). For these reasons, in
figures 9 we show the solution of (3.24) for the periodic datum in (3.23) only during
the instants for which x � xs(t). To produce figure 9(a) we have chosen x = − 0.3.
Since in this case x <xs(t), ∀t ∈ �, a real analytical solution exists ∀t ∈ �, and the
numerical solution is represented by two distinct curves, the upper one being ỹ(+)(x, t)
and the lower one being ỹ(−)(x, t). We recall that solutions ỹ(±)(x, t) represent the
starting instant at which the incoming and outgoing characteristic curves, crossing
the (x, t)-point, enter the sloping region.

Figure 9(b) has been produced by using x = −0.2. In this case there are some time
intervals for which xs(t) <x, and therefore, the solution is not global; i.e. it is not
defined, ∀t ∈ �. As a consequence, the exact solution is represented by elliptic-type
patterns, the upper parts being associated with ỹ(+)(x, t) and the lower ones with
ỹ(−)(x, t).
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Figure 10. Contour lines of the first-order solutions for the periodic datum in (3.23) with
ε = 0.05 and ω = 1.5: (a) η(x, t), (b) u(x, t).
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Figure 11. Contour lines of the first-order solutions obtained by using the hodograph model
described in Antuono & Brocchini (2007) for the periodic datum in (3.23) with ε = 0.05 and
ω =1.5: (a) η(x, t), (b) u(x, t).

Finally, figures 10(a) and 10(b) show the contour lines of the solutions given in
(3.29) and (3.30) for the periodic datum in (3.23) with ε =0.05 and ω = 1.5. The typical
cell-type structure for the solution of the ‘beach problem’ of the NSWEs forced by
periodic waves and developing a standing wave pattern (Carrier & Greenspan 1958;
Brocchini & Peregrine 1996) is here easily obtained from the first-order solution
((3.29) and (3.30)) with no need of any coordinate transformation. Cells, confined
by surface contours of zero level, are characterized by the largest values near the
shoreline, while an antisymmetric pattern characterizes the solution for the onshore
velocity.

In order to compare the results above with the analytical solutions available in
the literature, in figures 11(a) and 11(b) we draw the contour lines of the first-order
solution obtained by using the hodograph model described in Antuono & Brocchini
(2007). Note that such a solution coincides with the periodic solution found by
Carrier & Greenspan (1958) when the latter is imposed to solve the BVP described
in §3.2. The contour lines for u(x, t) are almost identical in both cases (figures 10b
and 11b), while on the contrary, some discrepancies arise for η(x, t). This is due to
the different ways in which the models account for the nonlinearities. Indeed, both
the solutions for η retain some O(ε2) contributions (see Antuono & Brocchini 2007).

Similarly, it is very simple to obtain the time evolution of the near-shoreline flow.
Figure 12 shows some snapshots of η(x, t) and u(x, t) at different times during a
complete swash cycle: the free-surface evolution is characterized by the classical
nodal point characteristic of the standing wave pattern. (This benchmark is one of
the most useful to assess the value of numerical solvers of the NSWEs with respect to
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Figure 12. Snapshots of the first-order solutions for the periodic datum in (3.23) with ε = 0.05
and ω = 1.5: (a) η(x, t) during the run-up to run-down phase (tn = t0 + nT/16); (b) η(x, t)
during the run-down to run-up phase (tn = t0 + T/2 + nT/16); (c) u(x, t) from the maximum
shoreward velocity to the maximum seaward velocity (tn = t0 − T/4 + nT/16); (d ) u(x, t) from
the maximum seaward velocity to the maximum shoreward velocity (tn = t0 + T/4 + nT/16).
For all panels t0 = 1.4834, T = 2π/ω and n= 0, 1, . . . , 8. The thick solid line is the beach
bottom in (a) and (b).

the description of near-shoreline flows, e.g. Hubbard & Dodd 2002.). Using the first-
order solution, it is simple to show that the maximum shoreward/seaward velocities
lead the maximum run-ups/run-downs by T/4 (T is the wave period) and that they
occur when xs(t) = 0. For the sake of clarity, η(x, t) has been plotted starting from
the maximum run-up to the maximum run-down and vice versa. Similarly, u(x, t) has
been drawn starting from the maximum shoreward velocity to the maximum seaward
velocity and vice versa. This implies that times for η(x, t) and u(x, t) are not the same
(see also the figure caption).

Finally in figure 13 we show the comparison between some snapshots of η(x, t)
and u(x, t) as computed through the present model and that of Antuono & Brocchini
(2007). Although some discrepancies are observed (especially for η(x, t)), the global
behaviour is fairly good and improves if we refer to the second-order solution (see
figure 14). Since the structures of the hodograph solution and of the solution of the
present model are completely different, the match between them is regarded to be
good.

The procedure to get the second-order solution for the periodic case is the same
as shown in Appendix B, even if the computations for the non-homogeneous part of
the solution are rather long and tedious. The simplest way to obtain the second-order
solution is to rewrite F̂ (z, s) as

F̂ (z, s) = A(z)δ(s − 2ω) + B(z)δ(s) + C(z)δ(s + 2ω), (3.35)

where δ indicates the Dirac ‘function’. (The expressions for A(z), B(z) and C(z) can be
easily obtained by using, for example, the software package Maple and then translating
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Figure 13. Comparison between the first-order solutions as obtained through the present
model (solid lines) and the model of Antuono & Brocchini (2007; dot-dashed lines) for the
periodic datum in (3.23) with ε = 0.05 and ω =1.5. Time evolution of the flow variables is as
reported in the caption of figure 12. For all panels t0 = 1.4834, T = 2π/ω and n= 0, 3, 5, 8.

them into either a Fortran or Matlab code through the package ‘CodeGeneration’.)
The formulation in (3.35) enables an easy and straightforward evaluation of the main
second-order contributions. Then, similar to (3.27) and (3.28), we get

α(x, t) = 2 + ỹ
(+)
0 + ε

[
α0,1

(
ỹ

(+)
0

)
+ ỹ

(+)
1

]
+ ε2

[
ỹ

(+)
2 + ỹ

(+)
1 α̇0,1

(
ỹ

(+)
0

)
+ α0,2

(
ỹ

(+)
0

)]
,

β(x, t) = −2 − ỹ
(−)
0 − ε

[
α0,1

(
ỹ

(−)
0

)
+ ỹ

(−)
1

]
− ε2

[
ỹ

(−)
2 + ỹ

(−)
1 α̇0,1

(
ỹ

(−)
0

)
+ α0,2

(
ỹ

(−)
0

)]
.

To close the section and illustrate even better the power of the present method, we
study the evolution of the interaction of two waves within the domain in a similar
manner as Brocchini & Peregrine (1996). Therefore, using wave parameters similar to
those of figure 2 of Brocchini & Peregrine (1996), we analyse the following bimodal
datum:

α0,1(y) = 2ε [cos(ω1y) + � cos(ω2y)] . (3.36)

The first-order solution, φ(1), is simply obtained as a linear superposition of two
solutions of the type shown in (B 4): the first one with frequency ω1 and the second
one with frequency ω2 and amplitude �. Notwithstanding that, the solutions for
η(x, t) and u(x, t) are intrinsically nonlinear. Figure 15 shows the contour lines for
η(x, t) and u(x, t), which illustrate the interaction of the mentioned modes.

The results found in the present section represent something new within the
available literature. Indeed, for the first time it is possible to get an approximate
nonlinear solution of the NSWEs over the entire domain of interest (i.e. including the
interaction of wave fields) directly in the physical space without using characteristic
variables. This removes the need for the numerical methods typically used to convert
the hodograph variables into the physical ones and allows for a straightforward
formulation of the BVP solution.
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Figure 14. Comparison between the second-order solutions as obtained through the present
model (solid lines) and the model of Antuono & Brocchini (2007; dot-dashed lines) for the
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4. Breaking condition
We have already shown (§3.1) that equation φy = 0 gives the shoreline position and

have assumed that it was possible to get an explicit solution y(t; ε). However, this is
not always possible. Indeed, on computing the t-derivative of (3.3), we get

dy

dt
φyy(t, y)|

y(t;ε) + φyt (t, y)|
y(t;ε) = 0. (4.1)

It is, therefore, evident that an explicit solution of the form y = y(t; ε) is possible
only if

φyy(t, y)|
y(t;ε) = 0. (4.2)

Such a condition ensures that at each time t only one characteristic curve φ(t, y(t, ε))
is tangent to the shoreline xs(t) (that is only one solution of (3.3) exists). Then, the
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condition

φyy(t, y)|
y(t;ε) = 0 (4.3)

represents the breaking condition at the shoreline. As a consequence, since we assume
the seaward data to be small and know that waves become steeper as they travel
shoreward, we can assume that non-breaking waves at the shoreline imply non-
breaking waves all over the domain (see, for example, Meyer 1986a). Given that
φ(0)

yy = −1/2, the condition for non-breaking waves at the shoreline is directly obtained
from (4.2) and reads

φyy(t, y)|
y(t;ε) < 0. (4.4)

Starting from (4.4) and using a perturbation approach, we can easily get a first-order
breaking condition. From §3.1.1, we know that φy =0 is equivalent to y(t) = y0(t) +
O(ε). Hence, evaluating φyy at y(t) = y0(t) + O(ε), we get

φyy(t, y(t)) = −1

2
+ εφ(1)

yy (t, y0(t)) + O(ε2) < 0. (4.5)

Dropping all second-order contributions and using the results of Appendix B, we get

ẍ(1)
s (t) <

1

ε
+ 2α̇0,1(t − 2), (4.6)

which represents a bound to the acceleration of the first-order shoreline. Then, the
breaking condition becomes

max
t∈�

[
ẍ(1)

s (t) − 2α̇0,1(t − 2)
]

<
1

ε
. (4.7)

Considering the periodic datum in (3.23), it is possible to find an explicit expression
for (4.7). As shown in Appendix B, we get√

a2(ω) + b2(ω) <
1

ε
⇒ ε <

1√
a2(ω) + b2(ω)

, (4.8)

where

a(ω) =

[
−2ω2J0(2ω)

J 2
0 (2ω) + J 2

1 (2ω)
− 4ω sin(2ω)

]
, b(ω) =

[
−2ω2J1(2ω)

J 2
0 (2ω) + J 2

1 (2ω)
+ 4ω cos(2ω)

]
.

Condition (4.8) gives a bound to the wave amplitude as a function of the steepness
parameter ω. In figure 16 we show such a bound as a curve in the space of the
parameters (ε, ω); below such a curve the wave is non-breaking. We also report the
breaking curve as predicted by the second-order solution of Antuono & Brocchini
(2007, 2008). It is evident that the match is excellent and that the first-order condition
given by the present model is equivalent to the second-order condition provided by
the hodographic model of Antuono & Brocchini (2007).

5. Conclusions
The BVP for the NSWEs has been first elucidated in detail and subsequently solved

by means of physical variables.
The present model provides solutions for the near-shoreline flows which offer a

better compromise in terms of completeness (a BVP is solved instead of the typically
analysed initial value problem), accuracy (the perturbation approach makes it possible
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Figure 16. Comparison between the first-order breaking curve for the periodic datum in
(3.23) (solid line) and the second-order breaking curve predicted by the model of Antuono &
Brocchini (2007, 2008; dot-dashed line).

to retain the main nonlinear features of the wave propagation) and simplicity (no
hodograph transformation is needed) than any other analytical model currently
available for the NSWEs.

Analytical results are available at both first-order and second-order levels of
expansion in terms of a small-amplitude parameter ε. Some sample waves, which
characterize both periodic conditions (sinusoidal waves) and pulse-like conditions
(solitary waves), are analysed in detail for illustrative purposes. For these waves, first-
order and first-half-order solutions of the shoreline motion and of the near-shoreline
flows are computed, illustrated and successfully compared with the second-order
solutions obtained by the hodograph transformation method of Antuono & Brocchini
(2007).

Solution of the BVP also allows for direct inspection of the flow evolution at the
seaward boundary and within the domain in which interaction of the incoming and
outgoing signals is accurately modelled and illustrated.

Finally, analytical conditions which describe the phenomenon of wave breaking
within the domain are provided. These have been compared with those computed on
the basis of the hodograph transformation method of Antuono & Brocchini (2007),
showing that the first-order condition of the present model is comparable to the
second-order condition of that model.

This and the fact that the sample first-half-order computations favourably compare
with the second-order solutions of Antuono & Brocchini (2007) testify to how the
present model provides a useful practical tool of computation even at a low order
in ε. However, the present model enables a straightforward computation (albeit one
involving a tedious programming task) of the main flow variables at the second order
of accuracy in ε by direct substitution of the available second-order solution φ(2) in
the expressions of the properties of interest (e.g. xs , us).

The present approach to the solution of the BVPs not only represents a significant
step forward in the analytical solution of near-shoreline flow problems but also
provides useful benchmarks for testing both simpler analytical solutions and numerical
solvers for near-shore flows.

This work was partially funded by the Italian Ministero dei Trasporti within the
framework of the ‘Programma di Ricerca INSEAN 2007-2009’ and Programma sulla
Sicurezza INSEAN 2009’.
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Appendix A. Theoretical foundations
A.1. Regularity of solution (2.26)

We here prove solution (2.26) to be regular as τ → 0. We consider only the inner
integral of the second term in (2.26). It can be separated in two parts

T1 = NJ (sτ )

∫ τ

0

szNK (sz) e− iszF̂ (z, s) dz, (A 1a)

T2 = sNK (sτ )

∫ τ

0

zNJ (sz) e− iszF̂ (z, s) dz. (A 1b)

We note that NJ (x) is a regular function, while NK (x) has a singularity at x = 0 (see
Abramowitz & Stegun 1964). We assume F̂ (z, s) to be a regular function of both s

and z and focus our attention on T1. If τ → 0, then z → 0, and since we have

lim
x→0

xNK (x) = − i,

we have proven that T1 is regular at both τ =0 and s =0. Now we can consider T2.
If we take the limit s → 0, following the previous proof we can state that T2 has a
regular limit. More complex is the proof for τ → 0. We first note that the integral
contained in T2 is a regular function of τ , and then we expand it in a Taylor series,
obtaining ∫ τ

0

zNJ (sz) e− iszF̂ (z, s) dz = F̂ (0, s)τ 2 + O(τ 3).

Hence, for small τ , T2 can be rewritten in the following way:

T2 = sNK (sτ )F̂ (0, s)τ 2 + O(τ 2),

Therefore, it shows a regular limit for τ → 0. We also note that both T1 and T2 go to
zero for τ → 0.

A.1.1. Consistency of the results

Since we have assumed the solution domain to be (τ, ξ ) ∈ (−2, ∞) × �, we have to
note that (2.23) and (2.26) are, actually, unbounded for τ → +∞. The same behaviour
is shown by the trivial solution since φ(0) = −τ 2/4. This seems to invalidate the
perturbation expansion; however, this is not the case. First of all, the leading term for
τ → +∞ is given by the trivial solution; we have φ(0) → −∞. This ensures that for each
characteristic curve there exists a finite time for which the curve reaches the seaward
boundary again and then travels out of the sloping zone. If we denote this special
time by τ̃ (ξ ), we have that the actual domain of the solution is (τ, ξ ) ∈ (−2, τ̃ (ξ )) × �,
that is a strip of the (τ, ξ )-plane. We can also give an estimate of such a time by
assuming, as usual, τ̃ (ξ ) = τ̃0(ξ ) + ετ̃1(ξ ) + O(ε2). We obtain

τ̃0(ξ ) = 2, τ̃1(ξ ) = φ(1)(τ̃0(ξ ), ξ ) = φ(1)(2, ξ ). (A 2)

Since in the strip domain φ(n) is, actually, bounded, ∀n � 0, we have that the
perturbation expansion is well posed.

A.1.2. An ill-posed problem

The BVP with the only assignment on φ|t=y is an ill-posed problem. To prove this,
we consider the following expression:

φ(t, y) = − (t + y − 2α(y))

2
(t − y) − 1. (A 3)
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It is easy to prove that (A 3) is a solution of (2.9) which satisfies the boundary condition
φ|t=y = − 1 but does not reduce to the trivial solution φ(0) when α(y) = 2 + y (that is
when the trivial case is considered). This means that the solution of the BVP is not
unique. However, the solution in (A 3) has not been considered, since being different
from φ(0), it has no physical meaning.

Appendix B. Breaking conditions: details of derivation
In order to compute the first-order breaking condition, we evaluate φ(1)

yy :

φ(1)
yy =

1

2π

∫
�

e istF(α0,1)

J0(2s)+ iJ1(2s)

{[
is

(t − y − 2)
− s2

]
[J0(s(t − y − 2))− iJ1(s(t − y − 2))]

− 2 i
J1(s(t − y − 2))

(t − y − 2)2

}
ds − α̇0,1(y) +

(t − y − 2)

2
α̈0,1(y). (B 1)

Using τ = t − y − 2 and the fact that J1(sτ ) = sτ/2 + O(τ 3) and J0(sτ ) = 1 + O(τ 2)
for τ → 0 (see Abramowitz & Stegun 1964), we get the following expansion for the
contribution, given in curly brackets, to the integral kernel above:(

is

τ
− s2

)
[J0(sτ ) − iJ1(sτ )] − 2 i

J1(sτ )

τ 2
=

(
−s2

2

)
+ O(τ ).

Consequently, it is

lim
y→y0(t)

φ(1)
yy (t, y) =

1

2π

∫
�

e istF(α0,1)

J0(2s) + iJ1(2s)

(
−s2

2

)
ds − α̇0,1(t − 2)

=
ẍ(1)

s (t)

2
− α̇0,1(t − 2). (B 2)

Now, let us consider the periodic datum in (3.23). It is

F(α0,1) = F
(
2ηI

0

)
= 2π[δ(s − ω) + δ(s + ω)], (B 3)

where δ is the Dirac delta ‘function’. Then the explicit solution for φ(1) is

φ(1)(t, y)=
2

J 2
0 (2ω)+J 2

1 (2ω)
{J0(ω(t−y−2))[cos(ωt)J0(2ω) + sin(ωt)J1(2ω)]

+ J1(ω(t−y−2))[sin(ωt)J0(2ω) − cos(ωt)J1(2ω)]} + (t−y−2) cos(ωy). (B 4)

Evaluating the previous expression at y0 = t − 2, we, finally, get

x(1)
s (t) = 2

cos(ωt)J0(2ω) + sin(ωt)J1(2ω)

J 2
0 (2ω) + J 2

1 (2ω)
. (B 5)

Such a solution allows for an explicit expression of (4.6). We get

a(ω) cos(ωt) + b(ω) sin(ωt) <
1

ε
, (B 6)

where

a(ω) =

[
−2ω2J0(2ω)

J 2
0 (2ω) + J 2

1 (2ω)
− 4ω sin(2ω)

]
, b(ω) =

[
−2ω2J1(2ω)

J 2
0 (2ω) + J 2

1 (2ω)
+ 4ω cos(2ω)

]
.

The inequality in (B 6) can be regarded as the dot-product between the vector
(a(ω), b(ω)) and the unit vector (cos(ωt), sin(ωt)) and, therefore, can be written in the
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following way: √
a2(ω) + b2(ω) cos(ϑ(t, ω)) <

1

ε
, (B 7)

where ϑ(t, ω) represents the angle between the vectors. This inequality immediately
implies the first-order condition in (4.8).
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